Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells.
نویسندگان
چکیده
UNLABELLED Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a(+)) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a "Trojan horse" to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a(+) cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a(+) cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a(+) cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a(+) cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a(+) cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a(+) cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a(+) cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a(+) cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a(+) cells to EC, which enhances viral replication, but that transfer of viral material from CD172a(+) cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. IMPORTANCE Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates via cell-associated viremia in peripheral blood mononuclear cells (PBMC) and subsequently infects the endothelial cells (EC) of the pregnant uterus or central nervous system, leading in some cases to abortion and/or neurological disorders. Recently, we demonstrated that CD172a(+) monocytic carrier cells serve as a "Trojan horse" to facilitate EHV-1 spread from blood to target organs. Here, we investigated the mechanism underlying the transmission of EHV-1 from CD172a(+) cells to EC. We demonstrated that EHV-1 infection induces cellular changes in CD172a(+) cells, promoting their adhesion to EC. We found that both cell-to-cell contacts and the secretion of soluble factors by EC activate EHV-1 replication in CD172a(+) cells. This facilitates transfer of cytoplasmic viral material to EC, resulting mainly in a nonproductive infection. Our findings give new insights into how EHV-1 may spread to EC of target organs in vaccinated horses.
منابع مشابه
CCL2 and CCL5 driven attraction of CD172a+ monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC)
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recrui...
متن کاملPassage of equine herpesvirus-1 in suckling mouse brain enhances extraneural virus growth and subsequent hematogenous neuroinvasion.
Intracerebral inoculation of field-isolates as well as established strains of equine herpesvirus-1 (EHV-1) in suckling mice results in viral replication in neurons and glial cells and induces encephalitis. By intraperitoneal (i.p.) inoculation, no histological lesion was observed in the central nervous system (CNS) in suckling mice with the EHV-1 HH1 strain (HH1), whereas a neuroadapted variant...
متن کاملHuman herpesvirus 8 enhances human immunodeficiency virus replication in acutely infected cells and induces reactivation in latently infected cells.
Human herpesvirus 8 (HHV-8) is etiologically associated with Kaposi sarcoma (KS), the most common AIDS-associated malignancy. Previous results indicate that the HHV-8 viral transactivator ORF50 interacts synergistically with Tat protein in the transactivation of human immunodeficiency virus (HIV) long terminal repeat (LTR), leading to increased cell susceptibility to HIV infection. Here, we ana...
متن کاملEffects of Sodium Valproate on the Replication of Herpes Simplex Virus Type 1: An in Vitro Study
Background: Sodium valproate, an anticonvulsant drug, is reported to stimulate Human Immunodeficiency Virus type 1 and Human cytomegalovirus replication. Since epileptic patients undergoing sodium valproate therapy may suffer from various virus infections, the effect of this drug on replication of viruses especially those affecting neuronal tissues such as Herpes simplex virus type 1 is worthy ...
متن کاملSodium Valproate-Induced Potentiation of Antiherpetic Effect of Acyclovir
Background: Sodium valproate (VPA), an anticonvalsant drug, has been reported to stimulate viral replication. A combination therapy with VPA and acyclovir (ACV) is used for the treatment of herpesvirus encephalitis, the commonest sporadic encephalitis of viral origin. Objective: To determine a possible interaction between VPA and ACV leading to a modification of antiviral activity of ACV. Meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 89 21 شماره
صفحات -
تاریخ انتشار 2015